
N-Tier Architecture
In the previous chapters we have seen, through code samples, how 1-tier 2-layer 
and 1-tier 3-layer solutions work in our ASP.NET web projects, and the advantages 
of going for a 3-layered architecture to create scalable and maintainable web 
applications. In all of the high-level architectural configurations we have studied  
up to now, we were dealing with the basic structuring and coding of the main  
ASP.NET application code—the Visual Studio solution, to be more precise. We had 
not considered the database and the client browser as separate physical tiers. We 
did this because we wanted to focus on how we can structure our main application 
solution in terms of layers and tiers. However, from this chapter onwards, we 
will include the physical database and the browser as distinct tiers being a part 
of the whole application. The reason for this change is because from now on we 
will be breaking our 1-tier application into multiple physical tiers (and not simply 
layers) and see how the entire distributed system works in collaboration. The term 
distributed system involves:

The main ASP.NET application code, which will be broken down further 
into separate physical tiers so that each tier or assembly can be used 
independently of the others
The physical database (an external RDMBS such as MS SQL Server, or any 
external storage such as XML files), also called the Data Tier
The client browser (Internet Explorer or Firefox where the HTML will be 
rendered) also called the Presentation Tier

In this chapter we will learn:

Why we need N-tier based systems
How to create a 4-tier architecture
How to create a 5-tier architecture
What Data Transfer Objects are
What a Lazy Loading design pattern is

•

•

•

•

•

•

•

•



N-Tier Architecture

[ 78 ]

Here, we will move from the basic 3-tier client-server model described in the 
previous chapters, to a four, five, or higher tiered architectures—in short,  
n-tier systems. Before moving ahead, let me emphasize an important point: it is very 
crucial to understand that there is no perfect architecture. Each application is unique, 
and therefore there can be different ways to implement an n-tier architecture. Hence, 
we will learn and understand the basic fundamentals of the n-tier system, and 
implement it in one particular style. The concepts discussed in this chapter will be 
generic enough to help you learn and apply your own customized n-tier style suited 
to the unique need of each project.

Why N-Tier?
"N-tier" is a team that almost every software developer knows, and a team that has 
been hugely debated across forums, blogs and offline discussion groups. During  
my early years as a programmer, I was so impressed with n-tier architecture that  
I thought every application should be n-tier, without even understanding the  
high-level view, which I eventually realized comes later with experience! To n-tier  
or not is the question for which we will try to find an answer in this chapter.

We have already seen 1-tier architectures, and if we keep the database on a separate 
machine with its own CPU, we will have a rudimentary 3-tier architecture in our 
web projects, as shown here:

Web Server
Tier 1

(Machine A)
Rendered HTML Client Browser

Tier 3

Database
Tier 2

(Machine B)

We have already seen how to break the main application tier in the above 3-tier 
application into logical layers. Now, the first question that comes to one's mind 
is why, exactly, do we need to break these logical layers into their own, separate, 
physical assemblies as tiers. 

The answer is that n-tiered development allows a component-based approach to 
software design, allowing developers to make updates and changes to individual 
tiers without breaking other code. Let me explain this further.


